Telegram Group & Telegram Channel
Что делать, если дисперсия некоторого признака почти нулевая? Как поступить с таким признаком?

▶️ Нулевая дисперсия означает отсутствие разброса в значениях этого признака. Он почти не изменяется для всех наблюдений. Такие признаки часто считаются малоинформативными.

✔️ Наиболее очевидное решение здесь — удалить такой признак. Его отсутствие вряд ли негативно скажется на производительности вашей модели. Если вы в этом не уверены, то можно попробовать оценить влияние данного предиктора на производительность, то есть создать модели с ним и без него и сравнить их.

Есть и другие соображения по этому поводу. Например, рассматриваемый признак принимает два значения: ноль и единицу. В основном он реализуется через нули, а единицы встречаются несколько раз. При этом каждый раз, когда данный предиктор принимает значение 1, мы точно знаем, что объект принадлежит к определённому классу. То есть признак можно считать информативным. Одно из решений для такого предиктора — собрать больше данных, но это не всегда возможно. Также можно рассмотреть использование байесовских моделей.

Так, принимать решение об удалении какого-либо признака следует после внимательного изучения данных.

#машинное_обучение
#статистика



tg-me.com/ds_interview_lib/225
Create:
Last Update:

Что делать, если дисперсия некоторого признака почти нулевая? Как поступить с таким признаком?

▶️ Нулевая дисперсия означает отсутствие разброса в значениях этого признака. Он почти не изменяется для всех наблюдений. Такие признаки часто считаются малоинформативными.

✔️ Наиболее очевидное решение здесь — удалить такой признак. Его отсутствие вряд ли негативно скажется на производительности вашей модели. Если вы в этом не уверены, то можно попробовать оценить влияние данного предиктора на производительность, то есть создать модели с ним и без него и сравнить их.

Есть и другие соображения по этому поводу. Например, рассматриваемый признак принимает два значения: ноль и единицу. В основном он реализуется через нули, а единицы встречаются несколько раз. При этом каждый раз, когда данный предиктор принимает значение 1, мы точно знаем, что объект принадлежит к определённому классу. То есть признак можно считать информативным. Одно из решений для такого предиктора — собрать больше данных, но это не всегда возможно. Также можно рассмотреть использование байесовских моделей.

Так, принимать решение об удалении какого-либо признака следует после внимательного изучения данных.

#машинное_обучение
#статистика

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/225

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Telegram?

Telegram is a cloud-based instant messaging service that has been making rounds as a popular option for those who wish to keep their messages secure. Telegram boasts a collection of different features, but it’s best known for its ability to secure messages and media by encrypting them during transit; this prevents third-parties from snooping on messages easily. Let’s take a look at what Telegram can do and why you might want to use it.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Библиотека собеса по Data Science | вопросы с собеседований from br


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA